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I. INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

The objectives of this contract may be summarized as

follows :
0

1 . Determine a source model for the 1975 Pocatello

Valley earthquake.

2. Compute the likely ground motion at the Wing V
Minuteman site due to the Pocatello Valley event
and determine those features of the source or
propagation path that may have caused this ground - 

-

motion to be peculi ar or untypical of western
U. S. earthquakes.

3. Using synthetic seismograms for typical western

U. S. earthquakes and earth structure , determine
the important characteristics of the ground motions
at regional distances within 200 km of these events.

4. Provide initial estimates of the similarities and

differences between the strong ground motions

4 generated by earthquakes and large surface nuclear
explosions.

In this report we will be concerned with the f i rs t  
-

‘

objective and that portion of the second objective which
compares the source model of the Pocatello Valley earthquake

with other western U. S. earthquakes. A companion report

(Rodi ,et al., 1979) addresses the remaining objectives with
special emphasis on the ground motion at W ing V from both
the Pocatello Valley earthquake and the 197 5 Yellowstone
earthquake.

A variety of techniques were used in order to carefully

delineate the source mechanism for the initial faul ting of t
he1



I
1975 Pocatello Valley earthquake . The data include after—
shock locations and observations of long period and short
period P waves . We use analytical models and a three-dimen-
sional finite difference earthq uake model to compute syntheti c 4
seismograms to match these data. We find that the Pocatello

Valley earthquake is characterized by normal faulting on a

plane dipping 39° to the west with a large left-lateral

strike slip component. This event turns out to be quite

similar in most respects to the 1971 San Fern ando earthquake
in Southern California.

1.2 SUMMARY H

The technical discussion in this report is divided in-
to three sections. In Section II we use analytical models to
infer a fault  model for the Poca tello Valley earthq uake. As
part of this contract, ILLIAC IV computer time was provided
in order that a three—dimensional finite difference model of
faulting could be exercised. Section III is devoted to a dis-
cussion of that work and its implications f or the physics of
earthquake faulting. In Section IV the results of the analy-

tical modeling of the Pocatello Valley earthquake arid the

finite difference calculations are compared and combined to
complete our sourr~e model for the Pocatello Valley event.

Important conclusions about the nature of earthquake fault-

ing in general are also drawn .

The techniques applied in Section II to infer  the
source parameters of the Pocatello Valley earthquake include

the following:

• A focal mechanisms solution is constructed from
observations of P wave f i rs t motion .

• Results from a study of the af tershock sequence
by Arabas z , et al. (l975b) were examined for
indications of the fault plane orientation .

2
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• Using the Archainbeau/Minster earthquake source
model (Archainbeau , 1968; Minster , 1973) and
methods for computing synthetic seismograms in
layered earth models (Bache and Harkri der , 1976)
synthetic seismograms were computed for compari-
son to long and short period P wave observations .

• The model parameters were varied to obtain esti-
mates for the source dimension , rupture velocity
and stress drop as well as conf irming the orienta-
tion. The main diagnostic features of the obser-
vations are the waveform and frequency content of
the P and pP phases , their time delay and their
relative amplitudes.

~~ important conclusion of Section III is that no uni—

form stress drop , uniform rupture veloci ty mode l can simul-
taneous ly f i t  the long and short period data . If the long
period level (moment) is large enough,  the synthetic short
period records are much too large -- by a factor of 3 to 5.
We were led to the same conclusion in an earlier study of the
1971 San Fernando earthquake (Bache and Barker , 1978) .

To improve the fit to the data over a broad frequency

range, variable stress drop and variable rupture velocjty
effects were introduced into the analy tical source model.
This is done in a rather ad hoc fashion and the results are
far from unique. However , we claim that they are qualita-
tively correct. The new source mode l gives a reasonably good
f i t  to the long and short period data for  the f i rst 5 to 8
seconds of fault ing.  

-

The approach in Section III is entirely di f ferent. In
this section our main attention is to the physics of earth-
quake faulting for events like the Pocatello Valley earth-

quake. Two three—dimensional finite difference calculations

were done to simulate faul t ing  in a un i form whole space . The
calculations were done on the ILLIAC IV computer usin g the
TRE S computer program (Cherry , 1977) .  The f i rst calculation
was for a linearly elastic medium while the second allowed

3
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elastic—plastic material behavior near the fault plane.

Using the method of Bache and Harkrider (1976), the results
of both calculations were expressed in a form compatible with
the programs for computing synthetic seismograms. The far—

field displacements and displacement spectra were studied.
The accuracy of the fini te di f ference method was verified
by comparing the results to analytical and numerical solutions
of crack problems. We find that main effect of the simple

plasticity admitted to the second calculation was less
abrupt stopping of the rupture at the edge of the fault plane.
This reduces the radiation of high frequency energy. Plastic

flow outside the fault plane increases the seismic moment.

In Section II we develop a model for the Pocatello

Valley earthquake in terms of an analytical model for which

parameter variations are convenient. However , interpreta-
tion of the derived parameters in terms of earthquake physics
is di f f i cu lt for any analytical model and is especi ally so
f or the Archambeau/Mjns-ter model which i~ cast in terms of

an unrealistic spherical geometry. On the other hand, the
ILLIAC calculations of Secti on III are close to the most
detailed and realistic models of earthquake faulting that

are currently available. Taken together, the two can be
used to define the source with considerable confidence. This

is our objective in Section IV.

Comparison of the fini te difference and analytical
models by means of synthetic seismograms appropri ate for
stations observing the Pocatello Valley event support our

conclusions about earthquake faulting reached with the

analytical models. That is , we cannot simu ltaneously match
the long and short period data with a single rupture veloc-
ity/single stress drop source model.

Another interesting facet of the comparison is that
source directivity effects can be seen in that data. The -L

4
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finite difference simulations are bilateral and give poorer
agreemen t with the short period data than the unilateral
analytical model.

Finally , we conclude that the variable rupture veloc—
ity analytical model derived in Section II is a good model

for the initial few seconds of rupture of the Pocatello

Vally earthquake. The long and short period te].eseismic

records show that the source is more complex and has longer

duration . The later faulting is, however , considerably
smaller as a source of seismic waves so our Model II should

give a reasonable estimate for the peak ground motions at

the regional ranges of ultimate interest.

1. 3 CONTRIBUTING SCIENTISTS

The authors of this report, Drs. S. M. Day , T. C.
Bache , T. G. Barker and J. T. Cherry , are responsible for
all material presented. A number of other Systems , Science

and Software (Si) scientists contributed to the work on which
this report is based. The principal scientists for the work
described in each section of this report are listed below

along with others who made substantial contributions .

SECTION II - AN ANALYTICAL SOURCE MODEL FOR THE POCATELLO
VALLEY EART HQUAKE

Principal Scientists : T. B. Barker and T. C. Bache

Contributing Scientists : D. G. Lanibert and B. F. Mason

SECTION III - FIN ITE DIFFERENCE MODELING OF EARTHQUAKE
FAULTING

Principal Scientists : S. M. Day and J. T. Cherry

Contributing Scientists : J. F. Masso and E. J. Halda

SECTION IV - COMPARISON OF ANALYTICAL AND FINITE DIFFEREN CE
MODELS

Principal Scientist: T. C. Bache

Contributing Scientists : S. M. Day and B. F. Mason
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II. AN ANALYTICAL SOURCE MODE L FOR THE POCATELLO
VALLEY EARTHQUAKE

2.1 INTRODUCTION

The March 28, 1975 Pocatello Valley earthquake was an
6.1 event occurring near the Idaho—Utah border. Our pro-

cedure for deducing the ground motions of interest involves

two steps . First, we use available data to infer a detailed

source model for the event. Then we use this source model to-

gether with estimates for the earth structure to theoretically
compute the ground motions of interest. This section de-
scribes our f i rst step ; inference of the source from analyt-
ical models.

Previous work on the Pocatello Valley event has

included a thorough study of the aftershock sequence (Arabas z ,
et al., 1975b). Fault plane solutions were constructed by

A. Rogers (USGS, private communication) from the first motion

P wave observations and by Battis and Hill (1977) from far-

field surface wave spectra. We take advantage of this work
in our more detailed study.

The details of our source model are largely determined

by a comparison of synthetic and observed short period seis-

mograrr -~ at teleseismic distances ; that is, at ranges greater
than 30’. These data constrain the source in the frequency

range from 0.5 to 2.0 Hz. Of course, the accuracy with

which we can constrain the source in this frequency band de-

pends on our ability to account for path effects. Unfor-
tunately , there are only a few good teleseismi c recordings
of this event and this increases the range of uncertainty.

The source model we use for our synthetic seismogram
computations is the analytical relaxation model of Archambeau

4 (1968) and Minster (1973). This model has previously been

used to model the 1971 San Fernando earthquake (Bache and

H
I
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Barker, 1978). The analytical form is convenient for varying

the source parameters. In Section III we will describe a de-
tailed finite difference faul t  model for earthquake faulting
that reproduces the fault physics with much greater accuracy.

Then in Section IV we will compare the results of the finite
difference calculations with our analytical model and discuss

the implications for the Pocatello Valley event and other

western U.S. earthquakes.

2.2 FOCAL MECHANISM DETERMINATION FROM P WAVE POLARITY

Within weeks of the event, Rogers (1975) determined a
focal mechanism solution from immediately available P wave

first-motion readings. Another solution was obtained by

Battis and Hill (1977) who used surface wave spectra to esti-

mate the fault plane orientation . Arabasz , et al. (l975b )

reported on a detailed study of the aftershock sequence and

used this information to deduce the fault parameters. These

three solutions are summarized in Table 1.

Looking at the previous focal mechanism solutions and

how they were obtained, we decided to verif y them by repeating
the P wave first-motion solution , adding data unavailable to
Rogers. For this purpose , first-motion readings were obtained

from the U.S. Geological Survey (USGS) (Rogers, private com-

munication) and from the California Institute of Technology

(Stewart, private communication), who also computed the lower

hemisphere location for the ray to each station . A summary

of station location , f irst motion , amplitude and magnitude

data is given in Table 2.

The P wave polarity da ta are plotted in a lower hemi-
sphere display in Figure 1. A rather well-constrained focal

mechanism is determined from the data . The orientation of

the two orthogonal best-fitting solutions is indicated on the

figure. One of these solutions is for normal faulting on a

8
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O DILITATIQNA~ FIRST MOTION

• COMP RESSIONAL FIRST MOTION
Solution 1 Solution 2

Strike N 1°E Strike = N 4 5 ° E
Dip = 60°E Dip = 39°W
Slip Up 64 °N Slip = Up 53 °N
Normal Faulting Normal Faulting

Figure 1. The lower hemisphere fault plane solution is shown
for the Pocatello Valley , Idaho earthquake of
28 March 1975.
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fault plane dipping 60° to the east with some right—lateral
strike—slip component. The second solution is for normal

faulting on a plane dipping 39 0 to the west with a large
left—lateral strike—slip component. Choice between the two

must be based upon other information .

2.3 GEOLOGICAL EVIDENCE

Arabasz , et al. (1975b) reported on a detailed study
of the aftershocks associated with this event. More than

400 af tershocks were accura tely located and are mapped in
Figures 2 through 5. The focal mechanisms are predominantly

for normal faulting with some strike-slip component. The

depth distribution of the af tershocks is indicated in the
cross-sections plotted in Figures 3 through 5.

The conventional wisdom in seismology is that the
af tershock distribution can be used to indicate the location
of the fault plane. We have plotted the main shock hypo—

center in Figures 3 and 4 using the epicenter location of
Arabasz, et al. (l975b) from Figure 2. The depth of 8.7 km

was deduced in the synthetic seismogram studies to be des-
cribed in liter sections. It is not greatly different from
the preliminary depth determination of 5.0 km given by

Arab. sz , et al. (1975a) . There may be errors in both the

depth and epicen ter determinations , but the aftershock dis-
tributions on Figures 2-4 certainly support the chosen

locations. Section 2 in Figure 2 turns out to be exactly
aligned with the westerly dipping focal mechanism solution

we have called Solution 2 in Figure 1. The depth distr ibution
of aftershocks in this section (Figure 4) is remarkably con—

sistent with the 39° w dip of the focal mechanism solution .
The aftershock distribution can also be used to help define

the fault dimensions.

I-
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Figure 2. The locations are plotted for the Poca tello Valley

earthquake and more than 400 fore and af tershocks
(reproduced from Arabasz , et a].., 1975b). The
strike for Solution 2 from Fi gure 1 is indicated .
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Figure 4. The depth distribution of events is shown for
Section 2. The main shock location is plotted as
in Figure 3 and the dip solutions of Fiqure 1 are

4 
indicated by a solid line (reproduced fz~m Arabas z ,
et al., l975b)
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Except for finite source directionality effects , there

are, of course, no differences in the seismic radiation from

the complementary solutions. Battis and Hill (1977) inverted

surface wave spectra to find complementary solutions qui te
close to ours. They state a preference for a solution dipping

60° to the east becaus e of its consistency with past seismic-
ity in the area and particularly the 1962 Cache Creek earth—
quake. But this seems a very weak argumen t for preferring
the east dipping solution over that dipping 3 90  to the west.

In summary , the aftershock distributions strongly sup—
• port the fault plane solution with a 39°W dip. We will later

show results from our attempts to model the short and long

period teleseismic body waves using this orientation.

2 . 4  CALCULAT ION OF SYNTHETIC SEISMOGRAMS

If we are to use far-field ground motions to deduce

the important characteristics of the earthquake source , we ‘I

mus t have a source mode l and an accurate means for accounting
for the source-receiver travel path. We briefly describe the
the nuznerica]. methods and models used. For a more detailed

account , see Bache and Barker (1978).

The source model we are using for this event is the
Archambeau/Minster mode]. (Archambeau , 1968; Minster, 1973).

The fa r—fie ld  P wave spectrum for this model has rough ly the
form indicated in Figure 6. The long period level (~i~ ) and

corner freq uency 
~~~~ 

are proportional to stress drop (4~a ) ,
fault dimension (L), rupture veloci ty (Vr) and P wave ve1oc-~
ity (c ), as indicated. They are also radiation pattern

dependent, though much more weakly. The source model also

includes directionality effects ; that is , enhanced high-f re—

quency energy in the direction of rupture propagation .
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Figure 6. A typical far—field amplitude spectrum is plotted
for the direct P wave radiated by an earthquake.
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For determining the amplitude of the source spectrum

we must account for elastic and nonelastic attenuation in the
earth. Synthetic seismograms are computed with the method

of Bache and Harkrider (1976) for embedding a complex source

representation in a plane—layered earth model. The source

region crustal model is tabulated in Table 3 (Keller , et al.,

1975), whi le that for the rest of the path is Model C2 of
Anderson and Hart (1976). Another important parameter is the

effective Q to account for anelastic attenuation along the
path. The short period waves are particularly sensitive to

this parameter. We approximate the effect of Q by applying

the operator (Strick , 1970)

exp -~rf t* []. — ~
. ~ ~~ 

l000] 1 ( 1)

where f is frequency and t* is the ratio of the travel time
to the effective path Q.

The procedure for deducing the source parameters from
the far—field body wave recordings includes several steps .

Given the source orientation , the P and S velocities in the
source region and a t* for the trave l path,  we guess values
for the other source parameters. Synthetic seismograms are

then computed and compared to the observations . The free

source parame ters (ta , VR~ 
L, depth ) are then adjusted to

optimi ze the agreement.

Because of the nature of the source mode l , the param-
eters that are actually fixed by the procedure are Poisson ’s

ratio ( v ) ,  M and the ratios L/VR ? VR/~
. That is , events

with the same v ,  L/VR I VR/~ 
and &i are indis tinguishable . . —

In the sequel we will assume u is known .

2.5 COMPARISON OF SYNTHETIC AND OBSERVED SEISMOGRAMS

Comparing synthetic and observed seismograms , we have
constructed a model of the Pocatello Valley earthquake. The

22
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- . TABLE 3

NORTHERN WASATCH (Keller , et al . ,  1975)

Layer Depth Thickness

1 1.4 1.4 3.4 2.0 2.25

2 15.5 14.1 5.9 3.4 2.73
- 3 2 0 .0  4 .5  6 .0  3.5 2 .8 0

4 25.0 5.0 6.0 3.5 2.80
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model parameters were selected by trial and error to f i t  the
data, beginning wi th the geological information we have dis-
cussed.

We fi rst consider the long period body waves . For an

event of this size the source corner frequency is well out-

side the bandpass of the long period instrument.  That is,
these data are mainly sensitive to the source orientation ,
depth and moment. Finite source effects such as the source

dimension and rupture velocity do not play a role.

We begin with a simple model including constant rup-
ture velocity and stress drop . This model (referred to as

Model I) is characterized by the following parameters .

MODEL I

Fault Length , L : 3 km

Rupture Velocity ,  VR : 3 km/sec

(Unilateral fault propagation toward the surface)

Stress Drop , L~cY : 257 bars

Orientation : Strike N45°
Dip 39°W
Slip Up 53°N

Of course, L and VR have no signif icance other than
the fact that they give the correct moment. The stress drop

is selected to bring the amplitudes of observed and synthetic
records into agreement, as we shall see. For the Archambeau/

Minster model the moment is (Minster and Suteau , 1977 )

M0 = 1.024 L3 M • ( 2 )

The observed and synthetic long period body wave
seismograms are compared in Figure 7 for four WWSSN stations
and the Canadian seismic network station RES. The agreement

24
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is good f or the f i r s t  5 to 8 seconds in which the main arriv-

als are the direct P wave from the fault initiation and the

associated free surface reflections.

In Table 4 we compare the observed and synthetic
amplitudes and periods for the maximum peak-to—peak excur-
sion . The period is twice the time lag between peaks. This

comparison is done for the five stations plotted in Figure
7 and several others. The period is very difficult to measure

on the observed records and the T0 in the table may be in
error by a second or so. Recognizing this, the observed and 

- 
-

synthetic periods are in quite close agreement.

The amplitude ratios in Table 4 include the effect
of differing instrument amplification at the periods T0 and
T5. If we ignore the apparent period differences and assume

the instrument amplification is the same for A0 and A5, the
mean is increased by 10 percent and the standard deviation is • 1
slightly reduced. These differences are not significant.

If the synthetic seismograms are computed with some
stan dard value for M0, the inferred moment is then the pro— H

duct of Ao/A5 and this standard value . The inferred moment
values are also listed in Table 4. These values are , of
course , dependent on the elastic and anelastic properties
of the path model chosen. In this case we are using the

model C2 of Anderson and Hart (1976) and t~- = 0.8. This

value is near the upper limit of values inferred from spec-

tral analysis of Basin and Range events (e.g., Der and
McElfresh), but near the lower limit of values obtained by
ananalysis employ ing synthetic seismograms (e. g ., Bache , - 

-

et a].., 1975 ; Burdick , 1978). Thus, it seems a reasonable
choice.
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The moment values inferred from the nine stations in

Table 4 are remarkably consistent; the standard deviation is

only 28 percent of the mean, or less if we ignore the fre—

quency dependent instrument correction. The mean value is

7.1 x 1024 dyne—cm. This is near the preliminary moment esti-

mate given by Arabas z , et al. (l975a) and is almost the same
as the value obtained by Battis and Hill (1977 ) from sur face
waves (see Table 1). The stress drop for Model I is i~a = 253

bars , which scales the moment of this value.

Now let us direct our attention to the short period

records. These data are sensitive to rather fine details

of the source. Since the teleseismic short period records

are of ten quite complicated and are influenced by both path
and source details, they have not of ten been used to infer
source characteristics. However , we were successful in
modeling the short period records for the San Fernando earth—

quake (Bache and Barker , 1978) and were anxious to see how
well other events could be modeled .

Synthetic short period records from Model I are corn— - :

pared to the observed records at five teleseismic stations
in Figure 8. Synthetic seismograms also are shown for a

model we call Model II , but we will discuss these a bit later.
There are few stations where the records are clear enough
to digitize and those shown are the best of them. The main

arrivals on the synthetic are P and pP. The sP phase is
rather small for this source orientation .

Comparison of the synthetic and observed records allows
us to identi fy the largest phase as pP. The P wave is small
and characterized by low signal—to—noise . It is not easy

to identify and measure on the observations.

The main diagnostic features of the comparison in—

d ude the waveform and frequency content of P and pP and the
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relative amplitude of the two phases. These contain infor-

mation about the fault propagation in the first few seconds

of rupture and the source radiation pattern (orientation) .

The spacing between P and pP can be used to fix the depth.

Precision in this depth estimate depen ds on our matching the
waveform well enough to unambiguous ly pick the onset of the
two phases .

Comparing the observed waveforms to those from the

Mode l I synthetic , we see that the two are in reasonable
agreement, especi ally when we take the rather poor quality
of the data in to account. The shape of the pP phase (which
also includes a small contribution from sP) is roughly cor—

rect. The observations are, perhaps , a bit longer period
than the synthetics. It is difficult to judge how well we

have fit the waveform of the P wave since it is not very

clear on the records. The spacing between P and PP seems to

be fit about as well as possible. The relative amplitude of

the P and PP phases are fit fairly well , though the P phase -

is a bi t too large at several stations .

In Table 5 we compare the amplitudes of the observed

and synthetic records . The source is Model I wi th ~a 253
bars ; that is, the-source that gave the bes t f i t  to the long
period data. If our source f i t  the long and short period
data equally well , the ampli tude ra tios would have a mean of
unity.

In Table 5 we list observed/synthetic amplitude ratios

for both the P phase and the maximum phase that we have - 
-

identified as being primarily pP. We have attempted to com— 
• 

- -

pare ampli tude measurements made from corresponding portions
of the wave forms and where the measured periods are approxi—
mately the same . Small bars on the synthetic records m di—

cate where the peak—to—peak amplitudes and periods were
measured. It is importan t to compare amplitudes where the

30
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apparent frequency content is about the same to avoid having
to make a large correction for the frequency—dependent
instrument response . This instrument correction is a rough
approximation at best , and we try to minimize its effect .

The P wave amplitude ratios in Table 4 have a mean of
0.16 while the amplitude ratios for the maximum amplitude
have a mean of 0.25. For the former the scatter is very

large with the standard deviation being 83 percent of the
mean for this small population . The maximum phase data have
much less scatter , which is probably due to this phase be ing
much better defined .

The data in Table 4 force us to the conclusion that

Model I cannot simultaneously f i t the long and short period
data. When we adjust the model to have the correct moment,
the synthetic short period body waves are too large by a
factor of 4 to 6. Yet we have matched the frequency content

- - 
- of the short period records reasonably well.

The only difference between the long and short period
synthetic records is in the instrument response. Both use

the same source and earth models. The discrepancy between

short and long period sources could be reduced a bit by
supposing a large t*, but this could only account for a
relatively minor adjustment.

To match the data , we need a source that has the same
long period level as Model I , but 4 to 6 times smaller ampli—
tudes in the 0.5 to 2 .0  Hz range sampled by the short period
instrument. Since the frequency content of Model I is about

r ight , we cannot do this by merely supposing a larger source 
-

dimension (wi th lower stress drop) to reduce the corner
frequency . 

--

In our study of the San Fernando earthquake (Bache and
Barker , 1978) we found the same kind of d i f f i cu l ty  in

simultaneously matching long and short period data . We

A 
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concluded that this discrepancy could only be resolved by
constructing a variable stress drop/variable rupture ve loc-
ity model for the faulting. We believe the same conclusion

is warranged here .

W~ construct a second model for the Pocatello Valley

earthquake , Model 11. Our hypothesis is that the earthquake
must have included regions of faulting with relatively low
stress drop and rupture velocity that are important for the
long period radiation, but are only weak radiators of the

high frequency radiation seen on the short-period recordings.

Many combinatio-ns of fault parameters were tried. The “best”
of these will be described. The solution is , of course , far
from unique.

The faulting for Model Il includes two regions. In

the fi rst region the source paramcters are constant and not
unlike the values for Model I. The remainder of the fault ing
is characterized by a rupture velocity that decays to zero ,

linearly wi th rupture time . In this region the stress drop
decays to zero , but with a cubic dependence on rupture veloc-
ity. This rapid decay of stress drop was chosen to compen-
sate for the cubic dependence of amplitude on source dimension

that is peculiar to the Archambeau/Minster model. A less

rapid decay of stress drop generated too much long period
energy in the short period synthetics. In s ummary , we have
the following:

MODEL II

Fault Length ,  L: 7 km

Rupture Velocity, V : 3 km/sec , 0 < L < 4

(2 1-3L) km/sec , 4 < L < 7

Stress Drop , ~~~~~~~: 46 bars , 0 < L < 4
1.7 ( 2 l — 3 L ) 3’2 bars,  4 < L < 7

( unilateral f au l t  propagation toward the surface )

33
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Depth, H: 8 .7  km -

Orientation: Strike N4 5° , Dip 39°W
Slip Up 53°N

The dependence of VR and t~a on position along the fault is
plotted in Figure 9.

As far as the long period records are concerned ,

Models I and II are essentially the same . The short period
synthetics for both models appear in Figure 8. The Model

II records are clearly longer period and are missing some
of the high frequency detail exhibited in the Model I records .
As far  as the major phases are concerned, the P and pP, the
Model II records seem preferable at some stations while at
others no advantage is apparent with either model. Another

attractive feature of Model II is that its dimension is more
consistent with the size of the region defined by the af ter-
shock locations (Figures 2 through 4). Perhaps a better

model could be found somewhere between the two ; they seem
to span a range of desirable models.

The amplitude data for Model II are tabulated in Table
6 in the same format as the Model I data in Table 5. We see
that the amplitude ratios are 2 to 3 times larger for Model
II than they were for Model I. While this model has the cor-
rect long period level , the synthetic short period records
are still , on the average , about a fac tor of two , larger
than the observations. It may be that this is as close as
it is reasonable to get, given the many errors inherent in
the procedure and the relatively poor quality of the data .

Attempts to improve the agreement must focus on con—

structing a source that has an even larger region that con-
tributes to the long period energy without substantially

altering the short periods. This is difficult because the

long period level is constrained by data at periods that
are not all that long; five or six seconds. Also , the short
period waveforms for Model II are already too long period .
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Figure 9. Rupture Velocity VR and stress drop ~c versus
position on the fault for Model II are shown.
Values are normalized to their in i t ial  values ,
VRQ=3 kin/sec and 46 bars.
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Another interesting and potentially important aspect
of these data is that they show evidence of a small precursor
event a second or so before the main event. On the original
Develocorder records for  each of the five stations studied
there is a small arrival just before the main P arrival. Un-

fortunately, our digitization is too poor to see this very
clearly in the Figure 8 plots , though it can be discerned on
the RES, DAG and PTO playouts. The sharp break in the wave-

form between the major P and pP arrivals is consistent in
amplitude and time with a pP from such a precursor event at

roughly the same depth and orientation as the main event.

This event appears to be about 20 percent as large as the

main event at 1 to 2 Hz and to be at approximately the same
depth and orientation. The time lag of from 1 to 1.5 seconds

could be a result of both spatial and temporal separation.

2.6 CONCLUSIONS

We fi rs t summarize the way we have developed our model
for the 1975 Pocatello Valley earthquake. We have a rather
well-constrained focal mechanism solution for the event.

Choice between the two original solutions was made on the
basis of the depth distribution of aftershock locations de—

termired by Arabasz, et a].. (1975b) . Thus , we began our syn-

thetic seismogram studies wi th considerable confidence in our
knowledge of the fault orientation , strike, dip and slip.

The long period P waves are sensitive to the faul t
orientation, focal depth and moment. The orientation and
depth control the waveform while the moment controls the
amplitude. Our model fits the first 5 to 8 seconds of the
long period observations (Figure 7). The moment we infer is

essentially the same as that obtained by independent investi-
gation using other data. Later phases on the long peri od
records are evidence for the complexity of the faulting
after  the f i r s t several seconds .

I
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The main phases on the short period observations are
the direct P from fault initiation and the associated pP.
The sP phase is small for this fault orientation. These

data are not of good quality and it is di f f icul t  to make
detailed comparisons between observed and synthetic records.
The main diagnostic features are the waveform and frequency
content of the P and pP phases , their spacing and their
relative amplitudes.

We construct Model I , a single rupture velocity,
single stress drop model for the earthquake that gives a
good qualitative fit to the observations (Figure 8). One

discrepancy is that the synthetics appear to be a bit too
short period . However , if this source is to have the right
moment (inferred from the long period data), the synthetic
short period records are much too large—-a factor of 3 to 5.
We see no way to resolve this discrepancy except to suppose

that the event includes reg ions that contribute to the long
period level without substantially adding to the short period
radiation. That is, we need a variable stress drop, variable
rupture velocity , model.

We construct Model II which begins like Model I, then
moves into a region where the stress drop and rupture veloc-
ity decay to zero. This model substantially reduces the

discrepancy between the source amplitudes inferred from the
long and short period data. The main problem with Model II

is that in decreasing the short period amplitude , we have
made the synthetic seismograms too long period. That is , the

variable rupture velocity, variable stress drop effec ts are
still not strong enough to give an ideal fit to the data.

However , given the rather large errors inherent in the proce—
dure, especially in comparing amplitudes at periods where the
frequency—dependent instrument response is rapidly changing ,

Model II can be said to give a reasonably good fit to both

38
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the long and short period data. The f i t  could , probably , be
improved but an improved model must have roughly the same

variable stress drop , variable rupture velocity character as
our Model II.

The stress drop at initiation of Model II is 45 bars .
This compares to the value of 206 bars found with the same
methods for the 1971 San Fern ando earthquake (Bache and
Barker , 1978) . In our discussion of that event we point out
that the Archaiitbeau/Minster source model consistently under-
estimates the stress drop by a factor of about 3.6. Thus , we
prefer to estimate the actual stress drop for the initial

faulting to be about 162 bars. In any case, this is a factor
of 4—1/2 smaller than the San Fernando stress drop estimate.

The meaning of this stress drop difference is diff i-
cult to assess and requires further thought. It is fair to
say that all stress drop estimates are “average” estimates
in some sense. It may be that the Pocatello Valley event
includes smaller regions with substantially higher stress
drop that are not resolvable with the data at hand. Still,

we feel confident that the difference is qualitatively cor-
rect and that the Pocatello Valley earthquake was a lower

stress drop event.

In the next section we discuss an entirely dif ferent
method for computing the earthquake source. This is by three—
dimensional finite difference modeling of stress relaxation
on a fault plane.

1~
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III. THREE-DINEN SIONAL FINITE DIFFERENCE EARTHQUAKE
MODE L

3.1 INTRODUCTION

A three—dimensional f inite difference model (TEES) for
earthquake faulting (Cherry , 1977) has been made operational
on the parallel processing ILLIAC IV computer . As part of

this contract, ILLIAC IV computer time was provided to model - 

-

earthquake faulting with particular attention to the Pocatello

Valley event. In this section we present the results of our
earthquake modeling with the ILLIAC program.

Whi le the TEES algorithm is qui te flexible in the al-
lowed specifi cation of geometry and material behavior , the
version currently operational on the ILLIAC is quite restricted.
(The allowed fault plane geometry is shown in Figure 11.) The

faulting must be bilateral; in fact, it must nucleate from a
point and propagate with circular symmetry until reaching the ‘ I

edges of a rectangular fault plane. There are no material

boundaries other than the fault p lane ; that is, the calcula-
tions are done in a whole space .

The material behavior is linearly elastic except in

the vicini ty of the faul t  plane where plastic yielding is
permi tted. Including this rather elementary form of inelastic

material behavior represents an important first step toward

develop ing realistic mode ls for the true physics of earth-
quake faul t ing .

Two full calculations were carried out and the results
will be described in this section. For both calculations the

material properties and geometry are close to those inferred
for the Pocate llo Valley earthquake in the previous section .

f The difference between the two is that the elastoplastic be-
havior near the fau l t  plane was allowed in one case and not
in the other.
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In this section we describe the finite difference
modeling in detail and present the results as they apply to
earthquakes in general. In later sections we will relate

these results to the Pocatello Valley earthquake and discuss

the implications for western U.S. earthquakes in more general

terms.

Section 3.2 describes the problem formulation, and
Section 3.3 gives the faul t  and material parameters employed
in the two finite difference calculations. In Section 3.4,

we discuss methods for continuing the numerical solutions to

distances beyond the calculational mesh. - In Section 3.5 , we
compare our numerical solution for the purely elastic case to

available analytical and numerical results for similar prob—

lems , in order to verify the accuracy of the numerical method.
Section 3.6 presents the results for the near source stress

and velocity fields for both f ini te difference calculations.
The far—field radiation for both calculations is discussed in

Section 3.7 .

3.2 PROBLEM FORMULATION

We treat faulting as a propagating stress relaxation
due to shear failure on a planar surface. Ideally, we would

like to specify the relevant physical properties of the medium

and i t..1 initial conditions , and allow a mathematical model of
failure to determine the subsequent evolution of the faul t
p lane . However , this study does not address the physical
mechanism of failure. Instead , we prescribe the propagation

of the fault surface. Boundary conditions on the fault sur-

face are governed by a simple Coulomb friction law.

We will speci fy : (i) the initial state of the medium

and its constitutive properties , (ii) the evolution of the

faul t  plane , and (i i i)  the boundary conditions to be satis—
fied on the fault plane. The mathematical model of faulting

- 
- 
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is then solved using a three—dimensional f ini te  difference
method (Cherry , 1977). 

-

3.2.1 Initial Conditions and Constitutive Properties

For time t less than zero we assume that an equilib-
rium state of stress exists , with displacement and velocity

everywhere zero. The equilibrium configuration is such that

the prospective fault plane experiences a shear stress

and a compressional normal stress aN.

Average stress changes associated with faul ting are
modest -- on the order of a few hundred bars . Furthermore ,
faulting represents a relaxation of stress, except near the
fault edges . Linear elasticity is thus probably an adequate
model of material behavior outside the immediate zone of

faulting. However, large strains do occur at the edges
of the fault ahead of the rupture. Some model of rock strength

mus t be incorporated to prevent large stress concentrations
from accruing immediately ahead of the faul t .

For this study, a simple model of plastic yield was
utilized in the region adjacent to the fault. The plastic

f low model is as described in Cherry , et al. (1976). If ~~~~
‘

is the deviatoric stress tensor , calculated assuming that the
strain rate is elastic, then the actual stress deviator ~~~~

‘

is given by

a for J >— ,2 3

(3)

2
for

where is the second deviatoric invariant defined by
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and Y is a material constant representing yield strength. The
stress adjus tment described by Equation (3) is permitted only
within a specified zone near the faul t .  Elsewhere , linear
elastici ty is presumed to hold.

3 .2 .2  Evolution of the Fault Plane

For this study ,  we speci fy the geometry of the fault
surface as a function of time , rather than deriving the fault
surface from the model as a consequence of a failure mechanism.

This is viewed as a first s tep toward more fully determinis tic
calculations.

The rupture surface is assumed to be planar , to nucle-
ate from a point, and to expand symmetrically at a constant
prescribed rupture velocity (V

R), until it reaches prescribed

boundaries . ~(t) denotes the fault surface. If r and 8 are

polar coordinates in the faul t  plane , with r being the hypo-
central distance , and if the edge of E (°°) is defined by the
curve

r = B(O)

then L t) consis ts of all points r, 0 such that

r < mm [VR
t ,B(0)] H(t)

Two signi ficant features of this model of rupture are
(i) the rupture velocity accelerates instantaneously to its

final velocity, and (ii) the rupture advance terminates
abruptly , i.e., the rupture velocity decelerates instanta—
neous ly to zero at some prescribed boundary . The former as-

- 
- -4  sump-tion may be qui te reasonable. There is both theoretical

(Cherry , et al .,  1976 ; Das and Aki, 1977) and experimental
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(Archuleta and Brune, 1975) evidence that ruptures accelerate
rapidly to their terminal veloci ty , with the rupture veloci ty
essentially constant over most of the fault. The latter as-

sumption, that stopping of the rupture is abrupt , is probably

an unrealistic model for many earthquakes. For example , Bache

and Barker (1977) infer a faul t  model for the San Fernando
- earthquake in which the rupture velocity decelerates smoothly
to zero. On the other hand, if the rupture termination is
controlled by a fracture energy barrier , abrupt stopping may
be appropriate (Husseini , et al., 1975).

3.2.3 Boundary Conditions on the Fault

On E (t) we permit a tangential displacement discon-
tinuity s(x ,-t) , and require continuity of the normal displace—
men t:

s(x,t) lim [u(x + ciS) — u (x  - ca)], x on E ,
(4)

with c > 0. The ~ is a unit vector normal to I and U is the
displacement vector. We also require continuity of traction .

The tangential traction on I is assumed to obey a

simple Coulomb friction law. Let -r denote the tangential

traction vector , defined in terms of the stress tensor ~ by

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(
~~~—~~~~~

) , (5)

where ~ is the indentity tensor. Then define ~tf to be a slid-
ing frictional traction which opposes the slip velocity ~ and
is proportional to the normal stress:

44

--:

~  

~~~~~~~ ~~~~
- - - - -

~~~~~
-

~~~~~~~~~~~~~~~ .~~.



___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~T L

i
- 

— — for J s~ > 0,
L~I

(6)

0 for I i i  = 0

where a f is - f~~, the product of the normal stress
and the coefficient of dynamic friction (a f is presumed to be
positive). Finally , define as the tangential traction on

I which would be required to enforce continuity of velocity.

We wish to set the tangential traction -r equal to -r~
whenever the slip velosity s is non-zero. At the instant when

s becomes zero at a given point, T equals ~~~~ , by definition.
If further slip is permitted at that point , t reverse to T f .

However, there is a condition under which further slip
is inconsistent with the equation of motion. To see this , we
write the equation of motion (in the absence of body forces)
as

( 7 )

Letting the fault be the plane z = 0, we consider a small

sphere surrounding the point x ~n the fault. Figure 10 il-

lustrates this. S~ and S denote the surf ace of the hemi-
sphere. in the +z and -z halfspaces , respectively. Taking
the scalar product of Equation (7), first with ~c sgn (z),
then with ~ sgn (z), integrating over the volume of the
sphere , and applying the divergence theorem, we get the pair
of equations :

2A.~
= + r ) ,

(8)
.. 2A

~~~~~
~~~~~~~~~~~~~~~~~~~~~~ -
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Figure 10 . Tractions on the exterior of a fictitious spherical
surface centered on a point on the fault plane I.
f+ and f are tractions on the hemispheres S~ and
s~ , respectively .
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A1 is the area of the fault plane encompassed by the sphere;
M is the mass of each hemisphere; Ld

~x 
and i~ii~, are the x and y

components, respectively, of the average acceleration in the
+z hemisphere minus the average acceleration in the —z hemi-
sphere; ~f and ~f are the x and y components , respectively ,
of the average traction on the exterior of S minus the aver-
age traction on the exterior of S ;  and 

~ 
are the compo-

nents, respectively , of -r , averaged over A1. As the radius

of the sphere is reduced, and approach 5x and
respectively ; and and -~f~ approach

- a f ~~~ 
and - af ~~ 2 +~~ 2)l/2

respectively, if slippage is occurring. Thus , Equati on (9 )
takes the form

= 
~~~~~~~~~ 

[
~~x 

- a f 
~~~ +~~ 2 ) 1/2]

- 
— (9)

= 

~~~~~~~~~ [~~y 
- a f 

(
~~2 ÷~~~2 )1/2].

If slip is to recommence af ter going to zero at t = t0 , ~ (t ~ )

will have the same direction as s (t), so the equations at

can be written
0

= -

~~

-

~~~~~~ 

— a f ~~~ 
‘
~..2)172

] 

(lOa)

2A1 
- a f ~~~ ÷~~ 2)T/2]. 

(lOb)
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This pair of non—linear equations in two unknowns has the solu-

tion (Day, 1977 , Appendix IV)

-. 2A1 sgn (s )
= — 

~~~ 1/2 (lla)

I 
(l+H~
) ]

2A.~ sgn (s )
= —~~-- ~~~ — a f 2 1/2 (llb )

y

This solution would always exist if the coefficient of the
signum function , a f~ were negative. Note , however , that this
coefficient is necessari ly positive , by virtue of the fact
that friction always opposes the slip velocity . As a result,

there exists a condition under which no solution exists to •~

the system given in Equation (10). The condition for no

solution is

+ ~~ 2 \l/2 < a . (12)x y j f

This is just the condition that a exceeds T 
~ 

in whichf —c
case we see that further slip is precluded. This leads to

the following statement of the boundary conditions on I govern—
ingT:

if I j i. I > af

.1= 5 (13)

-r , i f  jr~~~ < a—c —c — f

Thus , healing of the fault is not arbitrarily enforced , but re-
sults when the equations of motion will not admit a solution
with a veloci ty discontinuity .
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3. 3 FAULT AND MATERIAL PARAMETE ES

We performed two three—dimensional f inite difference
calculations for this study. The two calculations differed

only in the yield strength Y assigned the material. Both cal-
culations were for a square faul t  plane in a uniform whole
space , with rupture ini tiated at the center of the square
fault (Figure 11). The following parameters were employed
for both calculations:

P wave velocity a- = 5.93 km/sec
S wave velocity B = 3.42 km/sec

Density p = 2.74 gm/cm

Rupture velocity VR = 3.08 km/sec

Tectonic shear stress a T = 1 kbar
Frictional stress a f = 0 . 8 2  kbars
Fault dimensions 2ax2a = 3 km x 3 km

For the firs t fini te difference calculation, the
“elastic ” model, the yield strength Y was set to infini ty,
so the constitutive model was linearly elastic. For the

second f ini te  difference calculation, the “ plas ti c” model ,
Y was set to I~~~~ , so that the faul t  zone was initially
stressed to the failure surface . Wi th this choice of Y ,

plastic flow ensues when the deviatoric invariant increases

above £ts initial value. This dissipates any dynamic shear
stress concentration ahead of the crack tip. Plastic yield

was permitted only within 0.2 kin of the fault plane; else-

where linear elasticity was employed.

For both the elastic and the plastic fault problems ,

the medium was represented by cubic finite difference zones

0.1 km on a side. The numerical grid was large enough that

no reflection from the exterior grid boundary returned to
the fault zone during the calculation.
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Figure 11. (A) The faul t  configuration for the fini te
difference simulation , and (B) the coordinate
system for describing the radiated field.
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The formulation of Section 3.2was simplified somewhat for
these finite difference calculations by prohibi ting fault
slip in the direction normal to the prestress direction .

This restriction should not have a significant effect on the
solution . It is known , for example , that for the self-similar,
expanding elli ptical crack , the slip is everywhere parallel
to the prestress. Furthermore , Madariaga (1976) has shown

that the perpendicular component of slip is very small for

the case of a finite circular crack .

3.4 CONTINUATION OF THE ELASTIC FIELD

The computing cost for three—dimensional finite dif-

ference calculations increases rapidly with the distance over
which waves must be propagated through the numerical grid.

Since we are interested in simulating earthquake ground motion

at a variety of distances, it is importan t to be able to link
the numerically computed wave fields to analytic wave propaga-

tion methods. A very general method for doing so is provided

by an elastodynamic integral representation given by, for
examp le , Burridge and Knopoff ( 1 9 6 4 ) .  The approach is approp-
riate in both the near—field  and far - f ie ld .  Two elements are
necessary for this analytic continuation : (i) Time histories

of thc stress vector i (~~~, t) and the displacement vector
U (x ,t, are required on a surface surrounding the source

(and enclosing any inelastic region). These are available from
the fini te difference source calculation. (ii ) The Green ’s

(tensor—valued) function a (x ,~~,; t—t 0) and its spatial
derivatives are needed for the elastic medium representing the
propagation path to the observation point of interest x. For
a horizontally layered earth structure , these can be readily
computed by wave propagation techniques .

When (i) and (ii) are evaluated , the solution for mo-
tion at a given site is obtained via spatial integrals over
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the surface surrounding the source. The general form of the

integral representation (assuming isotropy) is:

u (x,t) = f  dt f  dS [g (x,~~,; t-t0) r ~~~~~~

(14)
- ~ ~~~~~~~~ t—t0): M (x ,t0)]

where

~ (~~~,t) XIi u (x , t )  + ~i [iu (x ,t )

+ u (x ,t ) Sj— —o o —

x and t are receiver position and time ,

A and ~i are elastic constants ,

n is the normal to I, directed into the source volume ,

u is the displacement vector ,

t is the stress vector on 1,

~ is the Green ’s tensor solution ,

~ is the identity tensor.

In the special case in which inelasticity near the fault is
negligible , the surface can be reduced to the fault plane.

In this case , the continuation method reduces to the so—

called dislocation method (see , for example, Haskell , 1964;
Aki , 1968) -— only the disp lacement discontinui ty at the
fau l t  need be monitored in order to propagate the source
disturbance.

Two special cases of the representation are particu-
larly useful for isolating the far-fielc~ radiation. The

first method applies to any spherical source region embedded

in a uniform elastic whole space. The second applies to a

planar fai lure surface embedded in a uni form whole space .

L __ 
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We designate these the “mu].tipolar expansion” method and the
“angular spectrum” method, respectively. We will apply these

methods in subsequent sections to obtain the radiated seismic

field from the f in i te  difference solutions.

3 .4 .1  Multipolar Expansion Method

When the source region is embedded in a homogeneous
whole space , we can simplif y the representation of the ex-
terior seismic field. This is accomplished by choosing the

integration surface to be a sphere , writing the displacements
and Green ’s functions in terms of scalar and vector potentials
(divergence and curl) and expanding the scalar potentials as
spherical harmonic series. The approach applies equally well

to the elastic and elastoplastic cases in this study,  pro-
vided the integration sphere surrounds the region of non-
linearity. Bache and Harkrider (1976) and Bache, et al.

( 1975) give details of the formulation . The following is a

brief outline of the method .

The Fourier transformed equations of motion in a homo-
geneous , isotropic , linear elastic medium may be written

= — + f — _
~
.\ V X x (15)

-

where u is d isplacement and k and k are the compressional
and shear wave numbers . The Cartesian potentials x and

x are defined by

= v . 
~~ , (16)

X~~~~~~ V X U .

The potentials can be shown to satisfy wave equations and

t 

therefore can be expanded in spherical eigenfunctions as

follows:
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(~~,w) = ~~~ h~
2
~ (k~r) ~~~ ~~ cos mq

+ ~~~~ (w) sin m~]P~ (cosO) , j = 1, 2 , 3 , 4 (17)

where k k = w/a and k.  k = u / B  for i = 1,2,3. The
(2) cx B

h are spherical Hankel functions of the second kind and the

are associated Legendre functions. x is the position vec-

tor, and r,0,~ are spherical coordinates such that x is given

in terms of Cartesian unit vectors ~~, ~~ , 2 by

x = r sinO cos p + r sinO sin~ + z r cos 0~

The multipole coefficients A~~~~(w) , B~~~~(w) , j  = 1, . . .,
4, are determined from the observed divergence and curl of the
displacement , obtained from the finite difference solution.
Using the orthogonality of the spherical harmonics , the multi-

pole coefficients are given by the expression

~~~~ (w) 2’r ~r cos m4
= 

h~~~~(k R) 
f  J X~~~~~ 

(x,w) P~~(cos0) { sined0d~ ,

B~~~ (w) 
a- 0 0 sin m~ (18)

where

C — 
( 2 2 ~+l)  ( 2.— m) 1

— 21T ( Z+m ) ‘ 
m ~

C20 = (2Z+l)/41T ,

and R is the radius of the spherical surface on which the
integral is to be computed .

The multipole coefficients A~~~~(w) , B~~~~(~i ) ,  j  = 1,...,
4 specif y the displacement field (through Equations 15 and 17)
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everywhere exterior to the (spherical) source region. This

is a convenient form for studying whole space radiation
properties. Separation into near- and far-field components
is simple, since the r dependence is isolated in the spheri—

cal Hankel functions. Also, radiation patterns are easily
exhibited, since the angular dependence is isolated in the
spherical harmonics .

One significant drawback to this approach is the

necessity to compute the full transient finite difference

solution on the spherical surface. This requires considerably

more computation time than is required to complete the tran-

sient solution on the fault plane. A second difficulty is

that there is some uncertainty in the number of terms which
must be retained in the expansion in order to obtain conver-
gence at a given frequency . Finally , the expansion is poorly

convergent when the distance from the origin to the observa-

tion point is comparable to the source dimension.

3. 4.2 Angular Spectrum Method

When non—elastic behavior can be neglected , the inte—

gration surface can be collapsed to the fault plane. For

this case , Kostrov (1968) and Dahien (1974) review the result-

ing si’nplification of Equation (14) for finding the far—field ,

whole space radiation. The first term in Equation (14)

vanishes , due to the continui ty of traction at the fault
plane. Further simplification results from employing the far-

field approximation to the whole space Green ’s tensor , the
point—source approximation (source dimension much less than

source—receiver distance), and from assuming a planar fault
surface with uni—directional slip tangential to the fault
plane. This leads to Dahlen ’s (1974) Equations (13) to (16)

for the Fourier trans formed P and S wave displacements ua- and

~~
B
, which can be written as
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~~ (r,8,c~,w) = ~~ B e R (O ,4) ~ (O ,p, w)
4 -rr ct r p p

—i wr/B
(r , O ,4 ,~~) = 

e 
Br ( O R e ( 8 ,~~) (19)

+ ~~~~ ( e ,~ ) ]  
~~~~~ 

(0,~~,w),

where R , R58, and R~~ are the double couple radiation pat-

tern co~ponents. They are given in terms of i~, ~ and ~~ , the
unit vectors in the directions of the fault normal, slip
direction , and source—receiver direction , respectively , by

R = i~ ~ : (~~ ~ + ~

(20)

R e~~~~~~~ 
( n e + e n ),

R~~~=~~~ r: (~~~~ +~~~ n) -

For the problem geometry of Figure 11, these factors are

R~ = sin 28 sin~ ,

R50 = cos 28 sin~ , (21)

R~~ = cosO cos~ -

The 12 and 1~ are obtained directly from a three—dimensionalp 5
Fourier transform (the “angular spectrum” (Bracewell , 1965))

of the slip velocity function. Taking x0
, y

0 to be Cartesian

coordinates describing the fault plane , and denoting the
— 

-
~~ velocity discontinui ty across the fault by ~ ~ (x0,y0,t) ,

12 and 12~ are given by
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• -i(K x + K y - - ~ t)
= f f f  d.x0dy0dt s(x 0 ,y 0 ,t) e x ~ ~

“ ~~ = ~~~
- sinO cos~

K = ginO sin~
(22a)

i ( K x + K y - ~~t)
= fff dx~ dy~ dt ~~(x 0 ,y ,t )e  X ~ ~~

‘ ~~ K~ = sine cos~

K = ~~~
- ginO sin~

(2 2b)

Equations (22a) and (22b) contain afl. the dependence
of the radiation on the finite difference solution. Thus, it
is only necessary to store the computed slip velocity at all

nodes on the fault plane , and it is only necessary to com-
pute the finite difference solution until the fault  has every—
where healed. Given this slip veloci ty function , Equations
(22a) and (22b) require a single three—dimensional Fourier -

trans form be performed. Then (or 12~~) as a function of c~ ,
for any given 0 , ~~ , is obtained by assembling the Fourier
transform values along a line through K

~ i Kb,, ~ space.
Equation (19) then gives the P and S wave spectra.

Since ~ is known from the fini te difference solution
at discrete points , it is natural to employ an FFT algorithm
to execute the three—dimensional transform . The application

is entirely straightforward and efficient. The only note

of caution concern s interpolation of the discrete transform.
For a given w , determining 12 requires interpolating the

K dependence of the discrete transform. The finite difference
7
solution provides the series s- - ~~ , i = 1,. .. I , j = 1,. ..J,

k = 1, . . .  K, where I and J are the number of nodes in the x
and y directions, respectively, at which slip is non—zero ,

and K is the number of time steps in the solution . Since the
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function is zero outside this interval , the appropriate
K
~ i K~ interpolation of the discrete transform is via convolu-
tion of the transform with a two—dimensional sinc function.

This is , of course , best accomplished by extending the series
s by adding zeros in the i and j directions . In practice it
appears sufficient to add enough zeros to double the series
length in these directions. For the applications presented 

—

in subsequent sections , the series were padded to four times
their original length in both directions . Further interpo-
lation in Kx , K~ can be done linearly without distortion of
the solution.

3.5 VERIFICATION OF THE NETHOD AND COMPARISON TO PREVIOUS
WORK

The numerical procedures involved in solving the non-
linear boundary value problem (Sections 3 .2  and 3.3 ) and
analytically continuing the resultant seismic field (Section
3.4) are sufficiently complex that a careful evaluation of

their accuracy is warranted. The ideal verification approach

would be to treat a simple case for which an exact -analytic
solution is available, then compare the analytic solution to
the numerical solution. Unfortunately, no analytic solution
exists for a three—dimensional problem in which a stress drop

is speci fied on a propagating fau l t  surface which ultimately
stops growing and heals . In this section we compare our numeri-

cal solution for the elastic fault prob lem to a variety of
available analytic and n umerical results for similar problems .
Then we check the internal consistency of the method by com-

paring the far— field pulses obtained from Fourier analysis of
the slip function with those obtained from the spherical

harmonic expansion of the outgoing elastic field.

- - 3.5.1 Kostrov’s Analytical Solution

Kostrov (1964) obtained an analytical solution for the
problem of a circular crack which nucleates at a point in a
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homogeneous , unbounded elastic medi um and expands at a con-
stant rupture velocity without stopping. His solution for
the displacement discontinui ty across the crack is

a I 2e 1 2 r I rs = C
~~
_ BV t — - — ~ - H (~

t _ V . _ )~~ 
(23)

VR R /

where C is a constant which depends on rupture velocity (see
Dahlen , 1974) , ce is the excess of the prestress over the
kinetic frictional stress , ~ is the shear modulus , B is the
shear wave speed, r is distance from the hypocenter , and VR
is the rupture propagation velocity. This problem corresponds
exactly to the condition of the elasti c model considered in
this study ,  until time a/V R~ 

where a is the half-length of

the square fault. In this case a = 1.5 km and V
R is 3.08

km/sec (O.9B), for which C equals approximately 0.81. We

shall compare the ini tial fault slip, obtained numerically,
to Kostrov ’s analytic solution . Once the rupture front
reaches the edge of the square fault plane and stops growing,
we expect the numerical solution to begin to deviate sig-
nificantly from Kos trov ’s solution.

Figure 12 shows the slip obtained at several points in
the f~’ilt plane. The dashed curves are the finite difference

solutioAl and the solid curves are the analytic solution. The
vertical bars indicate the arrival times of edge effects due

to stopping of the rupture at it5 outer boundary . The two

solutions display the anticipated agreement at each point
prior to the arrival of the edge effects . The small devia-

tion of the numerical solution f r om the analytic solution at
early time results , at leas t part ial ly, from imprecise weight—

ing of the stress drop to account for the fractional rupture
of a finite difference zone by the circular rupture front.

Archuleta and Frazier (1978 ) achieved somewhat better agree-
ment with Kostrov ’s solution by incorporating fractional rup—

ture into their finite element scheme.
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Figure 12. Relative displacement on the fault for the elastic
case. The dashed curves are Kostrov ’s analytic
solution; the solid curves are the fini te difference
results. x,y coordinates in kilometers are given in
parenthesis. Vertical lines indicate the arrival
times of edge effects due to fault finiteness.
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3.5.2 The Stopping Phase

Once edge effects occur , we have to rely on other nu-
merical solutions for comparison . The prob lem of a finite
circular fault has been solved by Madariaga (1976) using a

finite difference method. There are several features charac—

terizing his solution. When the fault stops growing, slip

veloci ty at a given point on the faul t  begins to deviate from
Kos trov ’s solution at a time corresponding to the P travel

time to that point from the nearest edge of the fault. Thus ,

a stopping phase propagates radially inward at the P wave

speed. The subsequent arrest of slip also initiates at the

outer edge and propagates radially inward. The velocity of

this healing “wave ” is not constant, but its average is near

the shear wave velocity.

Although we are dealing with- a square fault edge,

similar behavior is expected since rupture growth is circu-

lar and our final fault geometry is similar. Figure 12 shows

the stopping phase for points on the square faul t .  The
stopping behavior is very similar to that of the circular
faul t , in spite of the reduced symmetry in the problem (the
circular fault stops everywhere on its perimeter simulta-

neously , whereas the square fau l t  does not) . We also note
that t e displacement curve for the point at the hypocenter
differs from those for other points in the faul t  plane in
that it has two distinct breaks in slope associated with
stopping. This feature has been observed in several numeri-
cal studies of circular shear crack s (Archuleta , 1976;
Madariaga , 1976; Day , 1977) .

3 .5 .3  Stati c Configuration

Neuber (1937) solved the static prob lem of the dis-
placement of an elastic whole space due to a uniform shear
stress drop on a cir cular crack and obtained the slip distri-
bution
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s(r) =~~~~~~~ b~~~ l -~~~ , (24)

where s is the relative displacement on the faul t , ~a is the
stress drop , p the shear modulus , b the fau l t  radius and r
distance from the fault center. From Equation (24) we find

that the average slip s is 2/3 the slip at the center of the
fault .  However , numerical solutions to the corresponding
dynamic problem give a maximum and average static slip ap-
proximately 25 percent greater than Equation (24 ), for the
case in which rupture velocity is 0.9 (interpreting ~a as the
difference between prestress and kinetic frictional stress).

For example, Madariaga (1976) found a slip function 20 per-
cent in excess of Equation (24), and Archuleta (1976) and
Day (1977) found a 27 percent overshoot. The failure of the

dynamic solutions to approach the static solution is , of
course , a consequence of the non-linearity of the boundary

conditions (i.e., the healing of the fault).

From the square fau l t , we obtained a maximum residual
slip of 129 cm, which occurred at the center of the faul t .
If we reinterpret b in Equation ( 2 4 )  as v’~7~~, where A is the
fault area , then 129 cm exceeds the prediction of Equation

(24) by a factor of 1.24 , in good agreement with numerical re-
sults for the circular fault. The average slip for the square

fault was 79 cm, which is 0.61 times the value of the center.

The seismic moment obtained from this average slip was 2.28 x

io 24 dyne-cm. This value is 14 percent greater than the pre-
diction obtained by combining the static crack formula ,

Equation (24), with the expression for seismic moment,
pAi.

3.5.4 Computation of the Radiated Field

As a check on the internal consistency of the analysis
procedure , we compute far-field displacement spectra and pulses
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for the elastic problem by two different methods. Spectra and

pulses obtained from the angular spectrum of the slip function
are compared to those obtained from spherical harmonic expan—

• sions of the divergence and the Cartesian components of the

curl, evaluated on a sphere of 2.7 km radius. Of particular
interest is the convergence rate of the spherical harmonic

expansion, since we will rely on this technique alone to ob-

tain the radiation for the plastic crack problem.

Figure 13 compares four determinations of the far-
field S wave spectrum and time pulses for the elastic fault
model , observed at 0 = 00 . The dashed curves represent the
spectrum and pulse obtained by Fourier analysis of the slip
function. The other three sets of curves were obtained by

truncating the spherical harmonic series at 2. = 4, 6 , and 8,
respectively. The curves have been normalized by the zero—

frequency level M0 (4irpB 3r)~~~, where M0 is the seismic moment
obtained from the average static slip ~ :

M = p A s . (25)

As the figure indicates , the spherical harmonic expansion con-
verges rapidly at low frequency . For frequencies above 1 to
2 Hz, however, the truncated series can be significantly in
error. For example , at 3 Hz the spectrum obtained by trun-
cating the series at 2. = 6 is in error (relative to the spec-

trum obtained from the slip function) by a factor of 4.
Including terms up to 2. = 8 reduces the error to a factor of

1.5 (the maximum frequency for which the finite difference

solution is reliable is approximately 4 to 5 Hz).

Figure 14 compares far—field pulses and spectra at 3
azimuths ; the dashed curves were obtained from the slip func-
tion, the solid curves from the expansion in spherical

harmonics up to order 8. For computing far-field solutions

in the range 0—3 Hz, the spherical harmonic expansion, trun-
cated at 2. = 8 appears to be satisfactory.
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Figure 13. Comparison of fo-~r determinat ions of the far—field
S wave spectrum ari d time h i s tory ,  for  the elastic
f a u l t  model , observed at 0 = 0 - The normal ization
is described in the text.
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3.6 NEAR-SOURCE DEFORMATION

In the last section, we compared the slip function for
the elastic faul t  model to some three—dimensional analytical
and numerical solutions to related problems . In this section ,
we look in detail at the near—source stress and velocity
fields for both the elastic and plastic cases . Our main ob-
jective will be to evaluate the effect- of inelastic material
response in the faul t  zone.

3.6.1 Stress History Near the Fault

Figure 15 depicts the stress histories near the fault
plane for the two models (the purely elasti c model and the
plas tic model) . The shear stress in the di rection of pre—
stress (ayz ) is plotted versus time for seven points along
the fault plane diagonal , at increasing distance from the
hypocenter. The stresses shown are actually evaluated at the
finite difference zone centers adjacent to the fault, which

are 0.05 km from the fault plane.

First, consider the stress for the elastic problem
shown in Figure 15. Initially , the stress at a given point

is at the pres tress level (1 kbar). Prior to the rupture
front arrival at a given location , the stress increases above
the prestress level. This stress concentration ahead of the

rupture front  is a general characteristic of elas todynami c
cracks with subsonic rupture propagation . We note the amplifi—
cation of this stress concentration with increasing distance
in the direction of rupture. At the rupture arrival time ,

the stress drops abruptly, overshooting and then settlin g at
the prescribed frictional stress of 820 bars . The overshoot
results from the fact that the observation points are slightly
removed from the f au l t  plane i t se l f .  The same phenomenon is
present in Richard ’s (1976) analysis of the self-similar ex- ~ 1
panding crack. The stress then remains at the frictional

-
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stress level until the nearby part of the fault  plane heals .
Then the stress relaxes to a value less than that of kinetic
friction. The faul t  overshoots the static equilibrium value
of slip (see Section 3 .5 .3) . This healing wave shows up
clearly in Figure 15; it propagates toward the hypocenter from
the periphery of the fau l t .  The last phase evident in the
figure propagates outward from the hypocenter , and this phase
corresponds to the shear wave associated with the f inal  ar-
rest of slip at the center of the faul t .

Now consider the stresses for the plasti c problem in
Figure 15. Until healing occurs at a given point , the stress
history is unchanged from the elas tic case except that the
stress concentration ahead of the rupture front has been elim-
inated. After healing, the residual stress is nearly the
same as in the elastic case.

Figure 16 displays the stress near the faul t plane
as a function of azimuth ~~ . Again , the stress is zone
centered , so it is actually evaluated at points 0 .05  km dis—
placed from the faul t  plane . The f ive points displayed are
at approximately the same distance , 1.15 km , from the center
of the faul t .  The stress concentration preceding rupture is
nearly zero (actually sl ightly negative) at ~ = 00 , and in-
creases smoothly to a maximum of ~ = 900 . This pattern can
be compared to Figure 8 of Richards ( 1 9 7 6 ) .  The stress
histories are very similar , although his results are for an
ellipi tcal fault in which rupture -velocity varies with azi-
muth from 0.928 to B, whereas our numerical solution is for
circular rupture propagation at rupture velocity 0.98.

Figure 17 shows the stress component ayy along the
faul t  plane. This component of stress is not relieved by
plastic flow, and the concentration of Yyy ahead of the rup-
ture is essentially identical in both the plastic and the
elastic cases .
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3 . 6 . 2  Particle Ve locity on the Fault

Figure 18 shows the particle veloci ty obtained on the
faul t  plane at increasing distances from the hypocenter along
a radial line. The solid curves are for the elastic case ,
the dashed curves are for the plastic case.

It is evident from Figure 18 that the initial veloci ty
is strongly peaked and the peak value increases with hypo—
central distance. We can understand this characteristic of
the velocity curves by means of Kostrov ’s analytic solution ,

Equation (23). This expression implies a velocity propor-

tional to t(t2 — r2/4)~~~
”2 , which is singular at the rupture

arrival time (except at the hypocenter r = 0). Since a

f ini te  difference grid is essentially a low—pass f i l ter , we
expect the peak velocities in Figure l 8 -t~ be a filtered ver-
sion of the analytic solution. To approximate the filtering

effect  of the grid on peak velocity , we f ind v ,the  average of
the velocity over a short time T following the rupture ar-
rival :

a - 

2 2 —1/2
V = C — ~~-~ 1 t I ’t -

~~~--\ dt
~ ~~~~ 

v~/
( 2 6 )

= C —s- B T 1
~

2 (2 ~~~
— + T~

1
~

2
\ R /

which, for r/VR 
> >  T/2 is proportional to r1’~

2. That is ,

we expect peak velocity to increase as the square root of
distance in the direction of rupture . The peak velocities
in Figure 19 are in good agreement with Equation (26) if T

is assumed to be approximate ly 0 . 0 5  seconds ( ten times s teps) .
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It is evident from Figure 18 that the initial part of
the particle velocity is unaffected by the introduction of

plasticity, within the resolution of the finite difference

calculation. A large velocity peak occurs at the crack tip ,

even in the absence of the strong stress concentration asso-

ciated with the purely elastic problem. The plastic and

elastic solutions are indis tinguishable until the arrival of
the stopping phase.

It is informative to compare this result with Ida’s

(1972, 1973) analytic study of propagating cracks. That

study was an elastodynamic analysis, but fini te material
strength at the crack tip was modeled by introducing a dis-
tribution of “cohesive stress ” across the crack which opposes
the slip. This approach truncates the shear stress concen-

tration at the crack tip, and in this respect simulates the
plastic flow model used here. The spatial distribution of the

cohesive stress must be assumed a priori , however. Ida (1973)
gives an approximate expression for the peak particle velocity :

U eak~~~ D~~~~VR~~ (27)

where VR is rupture velocity ,  a~ is the excess of rock
strength over sliding friction. The D is a constant which
was found to be about one from numerical experiments with
different  assumed distributions of cohesive stress. For our

plastic crack model, a is 180 bars , V is about 3 km/sec , and
Il is about 3 x 10 bars , so Equation ( 2 7 )  would suggest a
value of about 180 cm/sec for  peak velocity . In contrast , the
peak veloci ty for the finite difference solution is twice this
value and is a lower l imit  due to the f i l ter ing e f fec t  of the
grid. 

-

The discrepancy is due to the fact  that Ida found D
to be of order 1 by considering smoothly varying cohesive
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Figure 18. Slip velocity in the fault  plane . Solid
lines are the elastic case , dashed lines
the elastoplastic case. x ,y coordinates
in kilometers are shown in parenthesis.
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stress distributions. In the current plastic mode l, crack
tip stresses are limi ted by plastic yielding to essentially
a constant (Figure 15), until the rupture arrival time. Then

the stress abruptly drops to the kinetic friction level. This
discontinuous behavior of the stress resembles a special case
treated by Ida (1972)  in whi ch the cohesive stress was as-
sumed to behave discontinuously. The crack tip stress was —

assumed constant over a short interval , then dropped abruptly
to zero . As Equation ( 2 2 )  of Ida (1972) indicates , this
special case yields a singular velocity at the point of stress
discontinui ty, in spite of the imposed fini teness of stress.

After the arrival at a given point of edge effects due - -

to stopping of the rupture f ront , the fau l t  plane velocities
are substantially modi fied by the plas ti ci ty . As Figure 18
indicates , yielding at the crack tip smooths the stopping
phase, robbing the slip function of high frequencies and in-
creasing the long—period content of the slip function . The
average static slip on the f au l t  plane is increased by about
11 percent when yie ’d is permitted.

3.7 FAR-FIELD RESULTS

In this section, we examine the radiated seismic field

for the two fault models. Far-field displacement spectra and

time histories are gi ven for P and S waves . The far- f ie ld
solutions were obtained from the multipolar expansions (Sec- - 

-

tion 4 ) ,  using terms up to 2. = 8.

3.7.1 Elastic Case

Figures 19 and 20 presen t normalized f a r — f i e l d  P and
S wave displacement spectra and time histories for the elastic
case. Results are shown at 10° intervals in 0 ;  Figure 19 is
for ~ = 90° , and Figure 20 is for  ~ = 45°. Solid lines are

the P wave displacements , dashed lines are the S wave ones .
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vals in e , for ~ = 90°.
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The curves are normalized by the zero frequency spectral
ampli tude , derived from the average slip s. For P waves, the

norinlization is )AAS (4irpa 3r) 1R .  For S waves , we can in-

terpret the curves either as the 8 component of displacement
normali zed by h A s  (4 iT p B 3r)~~~R , or as the • component of

3 —ldisplacement normalized by ~.tAs (4rrpB r) R~~ . The travel
times from hypocenter to receiver have been removed from the
P and S time histories.

Comparing results at ~ 90° with those at 4 = 45° ,
we note that pulse width and corner frequency have practically
no dependence on ~~~; at higher frequency there is some dif-
ference in spectral and time domain detail between the two
azimuths. (Results at ~ = 0° are virtually identical to
those at ~ = 90°, and are now shown.)

Dependence of pulse width and corner frequency on 8

and on wave type (P or S) is s ignif icant .  Our observations
concur with those of Madari aga ( 1976)

(a)  S wave corner frequencies are smaller than P
wave corner frequencies , except near 8 = 00 .

(b ) Pulse width and corner frequency are governed
by the travel time difference between stopping
phases from the near and far edges of the fault.
Thus , pulse width increases wi th 0 , being
greatest for observers near the plane of the
fault and smallest for observers near the fault
normal.

(C) P and S wave corner frequencies , for 0 > 30°,
are expressed very well by Madariaga ’s Equation
(24), replacing the circular fault radius with
the square fault-width.

3 . 7 .2  Plas tic Case

The average static slip for the plastic fault problem
is 88 cm, which exceeds the average slip in the elastic case
by 11 percent. This results from the smoothing of the stopping
caused by yielding at the faul t  edge. Actually , this is
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precisely the percen tage increase that would be predicted by
simple scaling of the elastic problem for a faul t  dimension
occupying the entire length and width of the plastic zone
(the plastic zone extended 0.2 km beyond edge of the fault) .

The seismic momen t for the plastic problem cannot be
obtained from the slip function , since the plastic deforma—
tion beyond the faul t  edge contributes to the low-frequency
spectrum of the radiated field. Therefore , we derive the
seismic moment from the zero-frequency limit of the radiated

field , obtained from the multipoles. This gives a ceismic
moment of 3.15 x io

24 dyne— cm , which is 38 percent larger
than the moment for  the elastic case. Scaling of the elasti c
solution as suggested in the las t paragraph would predict a
slightly larger increase in moment, 42 percent instead of 38
percent.

Figure 21 shows the e f fec t  of plastic y ield on the
far—field displacements . Spectra and pulses are shown at

= 90° for three values of 0: S wave solutions are shown at

0 = 0° and 0 = 90° , and P wave solutions are shown at 0 = 450 •

Dashed curves are the elastic case , solid curves the plastic
case. In each case , the far- field solution is the sum of
multipolar terms up to 2. = 8.

The main influence of plastic yieldiitg is to smooth
the stopping phases , with the result that tile low-frequency
part of the spectrum is enhanced at the expense of the high
frequency part of the spectrum. Consider , for  example , the —

P wave pulse at 0 = 4 50 • Two stopping phases , corresponding
to rupture arrival at the near and far edges of the faul t,
respectively , are apparen t in the P wave displacement pulse
for the elastic problem. These appear as discontinuities in
slope occurring at about 0.46 seconds and 0.67 seconds . The

P wave pulse for the plastic problem coincides with that for
the elasti c problem unti l the arr ival  of the f i rst stopp ing
phase . The displacement pulse for the plastic case then

~ 
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reverses more gradually , overshooting the elastic case; the
second stopping phase is a lmost imperceptible for the plastic
case.

Clearly , the increase in seismic moment is the conse-
quence of plastic strain induced at the periphery of the slip
surf ace . Relieving stress by permi tting plas ti c strain is
very similar to relieving stress by permitting frictional

sliding, but with the frictional stress approximately equal
to Y//~ (which in this case equals the prestress aT). Out—

side the zone in whi ch yielding was permitted, a static shear
stress concentration about 23 percent in excess of the pre-
stress developed. Thus , if a larger plastic zone had been
specified, the seismic moment would have been even greater ,
as plastic strains extended outward to eradicate the stress
concentration. On the other hand , had a somewhat higher
yield strength been specified , the results of the plasti c
problem would h ave approached those of the elastic case. If
the yield parameter Y//~ had exceeded the tectonic stress by
1.44 (aT 

— af) (that is, if Y had been 26 percent larger),
no yielding would have occurred , and the two solutions would
have been indistinguishable.

3.8 SUMMARY

Two three—dimensional f in i te  difference calculations,
simulating fault ing in a uniform whole space , have been per-
formed. The f i rs t calculation was for  a linearly elastic
medium ; the second treated an elas tic-plastic medium. Ac-
curacy of the fini te difference method has been verified by

- comparing the results to analytical and numerical solutions
of crack problems. The far—field displacements associated

with the finite difference simulations have been obtained

using an elastodynamic representation theorem. This integral

representation has been applied in two di f ferent forms and
the far- field results compared.
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An important objective was to evaluate the near-field
and far-field effect  of non—linear deformation in the faul t
zone . It was found that the initial portion of the slip
time—function is unaffected by the admission of a simple form
of plas ticity. The large velocity peak at the crack tip,
characteristic of elas tic crack problems , persisted in the
inelastic case. The stopping phase was modi fied somewhat,
however. Yielding at the edge of the fault resulted in less

abrupt stopping, reducing the high-frequency content of both

the slip function and the far- field displacements , and in-
creasing the average slip by 11 percent. Accumulation of
plas ti c strain beyond the faul t  edge resulted in a 38 percent
higher moment than in the elastic case.

These effects  of plasticity depend upon our choice of
the magnitude of prestress, the yield strength , the f r ic—
tional stress, and the width of the non-linear zone . The
problem treated was an extreme case in the sense that the
prestress level everywhere equaled the strength of the medium
(Y//~). With a moderate increase in the yield strength (26

percent), or a similar decrease in the prestress , there would

have been no yielding , and the solution would have been
identical to that of the elastic problem. On the other hand,
we arbitrarily limi ted the extent of the plastic zone . Out-
side tna plastic zone , a s tatic shear stress concentration
persisted which was nearly as large as that of the elastic
case; had the plastic zone been larger , more plastic strain
would have occurred, resulting in an even larger seismic

moment.
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IV. COMPARISON OF ANALYTICAL AND FINITE DIFFERENCE
MODELS

4.1 INTRODUCTION

In Section II we developed a model for the Pocatello

Valley earthquake which is expressed in terms of the analyti-
cal relaxation model of Archambeau (1968) and Minster (1973).

This analytical model is convenient to use because it is ex-

pressed in terms of relatively few parameters . However ,
interpretation of these parameters in terms of earthquake
physics is qui te controversial because of the geometry in
which the source model is formulated. The Archambeau/Minster
source is a spherical volume of reduced shear strength which
grows in a pure shear prestress field. The growth is asym-

metric with a point on the boundary being fixed as shown below .

This model does include directionalized rupture , f ini te  source
dimension and fini te rupture veloci ty effects , but in a geometry
un like conventional ideas of earthquake geometries.

The ILLIAC calculations of earthquake faul t ing are close
to the most detailed and realistic models of earthquake faul t—
ing that are currently avai lable . The disadvantage of using
such calculations to model a particular earthquake is ,  of
course, the expense of varying the parameters . The parameters
for our two calculations are not entire ly fixed , however , be-
cause the fault dimension and stress drop can be scaled.
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Taken together , the analytic models and the ILLIAC
calculations can be used to define the earthquake source with
considerable confidence . Questions about the physical s ignif-
icance of parameters of the analytical mode l can be resolved
by comparing to the numerical model results.

In this section we compare the analytical mode l for the
Pocatello Valley earthquake from Section II wi th the fini te
difference model. The implications of this comparison for
the Pocatello Valley event and for western U.S .  earthquakes
in general will also be discussed.

4 .2  SCALING THE FINITE DIFFERENCE MODEL

In Section 3.3 we listed the parameters for the two
ILLIAC earthquake calculations. For the elasti c case all
parameters could be nondimensionalized and the results could
have been presented in that form . The elastoplastic faul t
zone calculation is not so easily scaled and so we presented
all our results in terms of speci f ic  parameters .

For the elasti c problem , the fundamental parameters are
the aspect ratio of the faul t  (in this case , it is square) ,
Poisson ’s ratio Vh.25) , and the ratio VR/B (in this case 0 . 9 )
If these dimensionless parameters are held fixed, the ordinate
and ab~.cissa of the far-field displacement spectrum can be

scaled with fault dimension a, stress drop ~~~ shear modulus
M~ shear speed B ,  and hypocentral distance r. A nondimensional
f requency f ’  and nondimensional moment M~ have the form

f ’ -~~~~B
( 2 8 )

M
: M ’ = 0

~~ 

~aa 3

Thus , the far - f ie ld  spectral disp lacement scales as a3
~ a/h 8r

and frequency scales as 3/a.

L  
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The wave velocity parameters a and B and the shear
modulus h are appropri ate for the source region of the
Pocatello Valley earthquake and , in fact , for a majority of
the shallow western U.S .  earthquakes . Therefore , we leave
these parameters fixed . The rupture veloci ty is then fixed
to be VR = 3.08 km/sec or 0 . 9 B . The parameters we are free
to scale are the faul t  dimension , a , and the stress drop , t a .

In order to compare to data , we might wish , for ex-
ample , to scale the corner frequency wi thout modi fying the
long period spectral level (the  seismic moment) . To change
the corner frequency by a factor q ,  we would replace the
source dimension a by a/q and replace the stress drop ~a by
t~ci/q

3. Similarly , to multiply the moment by a factor of q
without modi fying the corner frequency , we would replace i~a

with qt~a , and leave the source dimension a unchanged.

The elas toplastic source is not so easily scaled.
Stress drop scaling can only be approximate. Zones that al-

most yield for one stress drop will yield for  a higher stress
drop . On the other hand , lowering the stress drop will re-
move yielding from some zones . It is not known how large an
effect  this is. However , we note that the stress drop scal—
ing is generally by a large factor since it is proportional
to the cube of the length scaling.

What about the length scaling of the elastoplas ti c
case? We can scale exactly with length according to ( 2 8 )  as
long as the answers are independent of the size of the plas-
tic zone . That is,  if the stresses outside the plastic zone
are everywhere less than the yield condi tion . However , as
discussed in Section 3 . 7 . 2 , the displacement f ield for this
elas toplasti c calculation is dependent on the dimensions of
the plastic zone . The quanti ta t i ve extent of this dependence
is, however , not known .
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There is some d i f f icu l ty  in obtaining a suitable defi-
nition of isa . The quantity 0 T 

- a
~ 

the difference between
tectonic and frictional shear stress , is a well-defined

physical parameter in our f au l t  model. However, we would
prefer to define t~a to represent a static stress drop , since
it would then be comparable to the parameter appearing in the
analytic fault model. The static stress drop is a well-de-

fined quantity at a given location on the fault plane , name ly
the difference between the initial and f inal  shear stress.
However , this quanti ty is not a constant , but varies with
position on the faul t  (see Figure 16) . Nor is the spatial
average of the static stress drop necessari ly a meaningful
quantity ,  since a large static stress concentration over a
small area can greatly affe ct this average , with minimal ef-
fect on the radiated field. Instead , we shall define ~a to
be 1.14 (a T - O

f
) ;  this choice of ~o gives the correct value

of seismic moment when the average slip is estimated from
Equation (24) and then the moment obtained from Equation (25)
(see Section 3. 5.3). With this definition , ~a for the elas-
tic fini te difference model is 205 bars . We note that the
actual s tat ic  stress drop on the fau l t  varies fairly
smoothly ; it is 1.29 (a T — O

f
) at the center , decreasing to

approximately 1.1 (aT 
- O

f) at a distance of 2a/ 3 from the
centei , with little azimuthal variation.

4.3 ELASTIC FINITE DIFFERENCE SOURCE COMPARED TO OBSER-
VAT IONS OF THE POCATELLO VALLEY EARTHQUAKE

Bache and Harkrider (1976) describe a technique for
representing the output of f in i te  di f ference  source calcula-
tions like those in Section III in terms of a multipolar ex-
pansion. This technique is summari zed in Section 3.4. Once
we have computed the expansion coeff ic ients, the mul tipole
coefficients , in the source coordinate system , the coordinate
rotation formulae given by Minster (1976) can be used to ro-
tate the source to ~-.ny desired orientE tion .
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The Archainbeau/Mj nster source used in Section II to
develop the analytical model for the Pocatello Valley earth—
quake is expressed directly in terms of multipole coefficients.

Thus, both sources can be represented in the same way and

direct comparison is facilitated. Synthetic seismograms are
computed using the methods and earth models described in

Section 2 . 4 .

The long period body wave seismograms for the finite
difference sources are essentially identical to those shown
in Figure 7. For these data the only important source param-
eters are the moment, focal depth and orientation.

Recall from Section 3.5.3 that the moment for the

elastic finite difference calculation with the parameters
given in Section 3.3 is 2 . 2 8  X i0 24 dyne-cm . The moment for
the Pocatello Valley earthquake inferred from the long period
body waves is 7.0 x i024 dyne—cm. Thus, we need to scale the
calculation to a moment that is larger by a factor of 3.1.

The most straightforward way to scale the elastic
finite difference source to the moment of the Pocatello Valley

event is to increase the stress drop from 205 bars to 630

bars. Let us do so and explore the consequences for the
short period seismograms.

In Figure 22 we add the short period seismograms for
the elastic finite difference source with ~a = 630 bars to

Figure 8 from Section II. The waveforms and frequency con-
tent are rather close to those for Model I, the analytical
source with a fault length of 3 km. The main difference is
that for the finite difference source the P phase is larger
relative to the pP phase. This is a consequence of the bi-
lateral nature of the finite difference source, as we shall
see .

The Archaxnbeau/Minster analytical model can be modi—
fied to approximate bilateral faulting. We do so by
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superimposing the radiation fields from two equal unilateral
faults rupturing in opposite directions in the same prestrain

field. The approximation is that the radiation field from

each unilateral segment does not include effects due to the

presence of the other segment. The mathematical consequences

of approximating bilateral faulting in this way are quite
elementary and are worth mentioning. The multipolar expan-

sion of the radiation field, Equation (17) in Section 3.4.1,

includes terms even and odd in Z. The dominant term at long
period is the double-couple, 2~ = 2. The other even order
terms account for finite source effects that are independent
of rupture direction. The odd order terms account for ef-
fects due to unilateral rupture direction. Thus, a unilateral
model like Model I can be made bilateral by merely dropping
the odd order terms from the calculation and doubling the
even order terms.

Let us now directly compare the seismograms from the
elastic finite difference source to those from the unilateral
and bilateral versions of Model I. All three sources are
scaled to the same moment which is 7.0 x io24 dyne—cm. The
finite difference source has faulting on a 3 km x 3 km rec-
tangular fault plane. The fault dimension for Model I is
L = 3 km, where L is the diameter of the spherical volume in-
to which stress is released. The bilateral version of Model
I has two such spherical volumes . The planar area of fault-
ing (ignoring the out-of-plane dimension) and stress drop for
each model are summarized below:

Planar Area Stress Drop,
of Faulting. (krn2) ~a (bars) —

Elastic Finite
Difference Source 9 630

Unilateral Model I 7.1 253

Bilateral Model I 14.1 127
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A bilateral Archambeau/Minster model with a planar
fault area of 9 km2 would include two sections, each with
L = 2.4 km. The stress drop which gives the same t~o L3 as
the bilateral Model I is 250 bars. A unilateral Archantheau/
Minster model with a planar area of 9 km 2 has L = 3.4 km and

= 176 bars. These stress drops are factors of 2.5 and 3.6
times smaller than the stress drop associated with the rec-

tangular fault. These factors compare to the value of 3.6
which scales the stress drop of the Archainbeau/Minster model
to that of a circular fault of the same planar area and same
moment (Minster and Suteau , 1976).

In Figure 23 we compare the five short period tele—
seisms from the elastic finite difference calculation to those
from the unilateral and bilateral versions of Model I. The

amplitude (corrected for period dependent instrument re-
sponse) and period data from these synthetic seismograms are
summarized in Table 7. The bilateral Model I is somewhat
longer period than the elastic finite difference source,
which is expected since it has larger source dimension. The
closer agreement of the bilateral Model I with the finite
difference source is most apparent in the ratio of pP to P
phases, though this is more clear from the records in Figure
23 th~~i from the numbers in the table .

Now let us return to the comparison of the seismograms
from the finite difference source with the Pocatello Valley

earthquake observations, Figure 22. In Table 8 we compare

the amplitudes and periods in the same format used for Tables
5 and 6 in Section II. We see that we have precisely the same

problem we had with Model I in Section II. That is , when the
finite difference source is scaled to have the correct moment ,
the short period seismograms are too large by a factor of
four or five.
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TABLE 7

AMPLITUDES AND PERI ODS OF THE SEISMOGRAMS OF FIGURE 23

P PHASE MAXIMUM PHASE
STATIONS Amplitude Amplitude A IA(microns) Period (microns) Period P max

RES
*EFD Source 2.11 1.1 2.59 1.0 1.23

Uni—Model I 1.80 1.2 2.33 1.0 1.29
81—Model I 1.84 1.3 1.96 1.2 1.07

DAG
EFD Source 1.38 1.1 2.38  1.2 1.73
Uni—Model I 1.14 1.2 2.27 1.2 1.99
81—Model I 1.19 1.2 2.12 1.3 1.78

KTG
EFD Source 1.29 1.1 2 .42  1.2 1.88
Uni—Model I 1.07 1.2 2.37 1.2 2.22
Bi—M odel I 1.11 1.2 2 . 2 4  1.3 2.02

BOG
EFD Source 0.76 1.1 1.75 1.3 2.30
Uni—Model I 0.72 1.2 1.72 1.2 2.39
81—Model I 0.69 1.2 1.53 1.4 2.21

PTO

~~5 Source 0.67 1.1 1.96 1.3 2.93
Uni—Model I 0.72 1.3 2.02 1.3 2.81
8±—Model I 0.61 1.2 1.88 1.4 3.08

*Elastic Finite Difference Source Model
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TABLE 8

AMPLITUDE AND PERIOD COMPARISONS FOR THE ELASTIC FINITE
DIFFERENCE SOURCE SEISMOGRAMS IN FIGURE 22

P PHASE MAXIMUM AMPLITUDE
Amplitude Ratio Periods Amplitude Ratio Periods

Station A0/A5 T0/T5 A0/A5 T0/T5

RES 0 .06  1.2/1.1 0.15 1.3/ 1.0

DAG 0. 07 1.1/1.1 0 . 2 0  1.3/1.2

KTG 0.15 1.1/1.1 0.33 1.2/1.3

BOG 0.35 1.4/1.1 0.33 1.2/1.3

PTO 0.20 1.4/1.1 0.18 1.2/1.0

Logarithmic
Mean 0.13 0 . 2 2

Standard
Deviation 106% 41%
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Can the finite difference source be scaled to have

less high frequency energy while retaining the same moment?

The appropriate scaling relations are described in Section

4.2. Let us consider three earthquake sources :

1. a = 1.5 km, = 630 bars ;

2. a = 2.25 km, = 187 bars ;

3. a = 3 km, = 79 bars.

The first is the elastic finite difference source with the

original fault dimension (a is defined in Figure 12). The

far—field displacement spectra for this source appear in

Figure 20. The second and third sources have the same

spectra except that the frequency axis is scaled by 1.5 and
2.0, respectively . That is, the corner frequency moves to
lower frequency. All three sources have the same moment.

In Figure 24 we compare the seismograms at Station

KTG for these three source models. The amplitude and period

data from these seismograms are compared in Table 9. We see

that the effect of moving the corner frequency to lower fre-

quency is quite large on the period. However , the short

period amplitudes do not get much smaller!

In Figure 25 we compare the seismograms at all five

stati (ls for the first and third models. The amplitude and

period data are compared in Table 10. At all stations we

see that the measured periods are 0.4-0.8 seconds longer for
the larger source dimension fault. However , the amplitudes

(after correction for frequency dependent instrument re-

sponse) are not much different for the two sources.

The results of this scaling of the elastic finite dif-
ference source support our conclusions about earthquake fault—

ing reached earlier for the San F~rnando (Bache and Barker ,
• 1978) and Pocatello Valley (Section II) earthquakes follow-

ing our analysis with the analytical Archaxnbeau/Minster model.
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Figure 24. Synthetic seismograms are compared at Station KTG
for the elastic finite difference source scaled to
three source dimensions with the source moment
held constant.
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TABLE 9

AMPLITUDE AND PERIOD DATA FOR SEISMOGRAMS AT KTG FOR THREE
SCALED VERSIONS OF THE FINITE DIFFERENCE SOURCE (FIGURE 24 )

P PHASE MAXIMUM PHASE
Amp1it~ide Period Amplitude Period

Source (microns ) (seconds~ (microns) (seconds)
a = 1.5, Aa= 630 1.29 1.15 2.42 121

a = 2 .25 , A c= 187 1.04 1.30 2.21 1.41

a = 3, Aa= 79 0.95 1.56 2.55 1.79
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TABLE 10

AMPLI TUDE AND PERIOD DATA FOR TWO SCALED VERSIONS OF THE
ELASTIC FINITE DIFFERENCE SOURCE (FIGURE 25)

STATIONS P PHASE MAXIMUM PHASE

Amplitude Period Amplitude Period
RES (microns) ( seconds) (microns) (seconds)
a = 1.5 2.11 1.1 2.59 1.0
a = 3.0 1.55 1.7 1.78 1.7

a = 1.5 1.38 1.1 2 .38 1.2
a = 3.0 1.04 1.6 2.28 1.7

a = 1.5 1.29 1.1 2.42 1.2
a = 3.0 0.95 1.6 2.55 1.8

BOG

a = 1.5 0.76 1.1 1.75 1.3
a = 3.0 0.81 1.6 2.01 2.1

PTO

a = 1.5 0.67 1.1 1.96 1.3
a = 3.e 0.50 1.5 2.19 1.9
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That is, we cannot simultaneously match the long and short
period data with a single rupture velocity/single stress drop
source model. In the following section we will see what ef-
fect the inclusion of elastoplastic material behavior will
have.

4.4 ELASTOPLASTIC FINI TE DIFFERENCE SOURCE COMPARED TO
OBSERVATIONS OF THE POCATELLO VALLEY EARTHQUAKE

In Section 3.7.2 we compared the far-field displacement

spectra from the elastic and elastoplastic finite difference
sources. The differences were that the elastoplastic source

has larger moment and lower corner frequency . These dif-

ferences make the elastoplastic source look much like the
elastic source scaled to a larger source dimension , at least
as far as the amplitude spectra are concerned. Let us now

study the seismograms from the elastoplastic source.

The moment of the elastoplastic source as computed is

3.15 x 1024 dyne—cm. This is smaller than the moment of the

Pocatello Valley earthquake by a factor of 2.2. We pointed

out in Section 4.2 that the elastoplastic calculations can
only be scaled approximately. But since comparison is easier
if all the synthetic seismograms have the same moment, let
us scale the stress drop to 451 bars , i.e., by a factor of

2.2. The scaled source spectra are probably not much dif-

ferent than we would have gotten if we had repeated the cal-
culation with this new stress drop.

In Figure 26 we compare the observations with the

synthetic seismograms from the elastic and elastoplastic

source calculations with the original source dimension (a =

1.5 km). For the elastoplastic source the amplitudes and

periods are compared to the observations in Table 10 in the

usual format.

From the seismograms in Figure 26 and the data in

Table 11, we see that the addition of elastoplasticity to the
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TABLE 11

AMPLITUDE AND PERIOD COMPARISONS FOR THE ELASTOPLASTIC FINITE
DIFFERENCE SOURCE SEISMOGRAMS IN FIGURE 26

P PHASE MAXIMUM AMPLITUDE
Amplitude Ratio Periods Amplitude Ratio Periods

Station Ac/As To/Ts Ac/As To/Ts
RES 0 .07 1.2/1.2 0.16 1.3/1.1

DAG 0 . 0 7  1.1/1.2 0 .21  1.3/1.3

KTG 0.16 1.2/ 1.2 0 .31 1.3/ 1.3 -
I BOG 0 .36  1.4/ 1.1 0 . 3 6  1.2/ 1.3 -~

PTO 0.21 1.4/1.1 0.20 1.2/1.0

Logarithmic
Mean 0.14 0.24

Standard
Daviation 104% 39%
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model causes the dominant periods to be a bit larger, about
0.1 seconds in most cases. With the moment at the right
level the synthetic short period seismograms are still too

• large by a factor of four or more.

- 4.5 CONCLUSIONS

The comparison of the analytical and finite difference
models confirms our most important conclusion in Section II.
The long and short perior data cannot be simultaneously fit

with a single rupture velocity , single stress drop model.

Variable rupture velocity, variable stress drop effec ts are
important.

In this section we have studied two fini te difference
earthquake simulations. Since these are for simple events ,

they are not able to match the long and short period data

simultaneously. When we scale them to the right moment, the

short period radiation is too large by a factor of four or
more.

Comparing seismograms from the analytical and finite

difference models we see the importance of source directivity
for matching the data. The finite difference sources are

bi1at~ral and give poorer agreement with the data than the
unilateral analytical source .

Another important arid interesting facet of the com-
parison is that it gives an opportunity to study the physical

meaning of the parameters of the Archambeau/Minster model

which is cast in terms of an unrealistic spherical geometry .

The radiation pattern of P and S waves from the analytical

model is not the same as from a planar carck , but the dif-

ferences do not appear to be too important. -
The physical meaning of the important parameter stress

• I drop is made more clear after comparing the analytical and
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finite difference models . We can scale the analytical model
to have the same planar area as the finite difference fault
plane. For the two models to have the same area , the stress
drop for the analytical source is a factor of 2.5 (bilateral)
or 3.6 (unilateral) times smaller than for the finite di f-
ference source . Thus , stress drops are underestimated by

• about this amount if they are based on the Archainbeau/
Minster model. This confirms the stress drop estimate for the
ini tial faulting of the Pocatello Valley event from Model II
given at the end of Section II; that is, 162 bars .
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